Comparative Analysis of Illumination Normalizations on Principal Component Analysis Based Feature Extraction for Face Recognition
نویسندگان
چکیده
منابع مشابه
Face Recognition Based on Principal Component Analysis
The purpose of the proposed research work is to develop a computer system that can recognize a person by comparing the characteristics of face to those of known individuals. The main focus is on frontal two dimensional images that are taken in a controlled environment i.e. the illumination and the background will be constant. All the other methods of person’s identification and verification lik...
متن کاملNovel Feature Extraction for Face Recognition using Multiscale Principal Component Analysis
A method of face recognition based on multiscale principal component analysis (MSPCA) is presented in this paper. Initially face area is extracted from the given face image using Adaboost face detection algorithm. From the face area, regions of interest such as eyes, nose and mouth part are extracted by dividing it along horizontal and vertical directions. Then MSPCA is employed on these region...
متن کاملLocalized Principal Component Analysis Learning for Face Feature Extraction and Recognition
We present a novel face feature extraction approach using localized Principal Component Analysis (PCA) learning in face recognition tasks. The localized PCA approach produces a set of fine-tuned feature specific masks from a constrained subset of the input distribution. This method is a guided-learning based on a set of pre-defined feature points over a short training sequence. The result is th...
متن کاملDiagonal principal component analysis for face recognition
In this paper, a novel subspace method called diagonal principal component analysis (DiaPCA) is proposed for face recognition. In contrast to standard PCA, DiaPCA directly seeks the optimal projective vectors from diagonal face images without image-to-vector transformation. While in contrast to 2DPCA, DiaPCA reserves the correlations between variations of rows and those of columns of images. Ex...
متن کاملPatch-Based Principal Component Analysis for Face Recognition
We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FUOYE Journal of Engineering and Technology
سال: 2019
ISSN: 2579-0625,2579-0617
DOI: 10.46792/fuoyejet.v4i1.309